

Declarative Real-World Abstractions

Paul Hudak
Department of Computer Science

Yale University

P.O. Box 208285
New Haven, CT 06520-8285

paul.hudak@yale.edu

November 2, 2001

Abstract

Abstraction is often described as the key to effective software design, and
declarative approaches to software design are often promoted as the
most clear and succinct. Unfortunately, language and systems designers
often get caught up in the their own little worlds, inventing abstractions
and declarative techniques that are justified based on intrinsic values
known only to language and systems design specialists. What the
designers have forgotten about is the real world. What we should be
striving for are declarative abstractions of real world phenomena. In t his
paper several examples of such abstractions are described in brief.

Introduction

Modern programming languages are full of promising abstraction techniques:
functions and procedures, objects and classes, modules and namespaces,
functors and monads, higher-order functions and types, abstract and algebraic
data types, and so on. With them the task of writing complex programs is
simplified, modularity is enhanced, and code reuse is facilitated. Indeed,
abstraction techniques are the closest thing language designers have to a “silver
bullet” for solving modern software development problems.

Unfortunately, most of these abstraction techniques are motivated from an
inward-looking perspective, or from mathematical foundations that are
allegedly self-evident. Inward-looking abstractions are improvements to previous
abstraction techniques, and are designed with the assumption that the previous
techniques were on the right track. Ones based on mathematical principles, or
that model mathematical structures, are designed with the assumption that
mathematics is a suitable basis for programming. In fact both of these
assumptions may be true, at least to some extent, but are these the only
foundations on which to design new abstractions?

In this paper I argue that we should be looking to the real world for guidance in
designing new abstractions. Indeed, one could argue that the success of
object-oriented programming stems from the fact that objects are motivated, to
a great extent, by the real-world notion of an object. I argue that there are also
other natural real-world phenomena that are not only intuitive, but are also
powerful, useful, and quite effective in designing modern software systems.

Time

Perhaps one of the simplest and most obvious aspects of the real world is that it is
continuously changing over time. It is natural for us to speak not only about what
is happening at the present, but also in terms of the future and the past. Yet
continuous time as a truly first-class concept is conspicuously absent from most
programming languages, which instead tend to focus on discrete concepts that
at best depend implicitly on time. Many applications have critical components
that are best described as time-varying behaviors. Examples include animation
and multimedia, signal processing, robotics, control systems, computer vision,
and graphical user interfaces. These are some of the most challenging software
development domains, and could benefit greatly from a suitable abstraction of
continuous time.

To see this concretely, suppose that time is a value that represents the passage
of time in seconds. The value sin(pi*time) then denotes a continuous sinusoidal
signal with a period of two seconds. In this way complex time-varying behaviors
could be defined easily and succinctly. Furthermore, with first-class time-varying
behaviors, one could perform various time-based computations, such as

integration and differentiation. For example, the position of a body with mass m
being accelerated by a force f could be defined as:

x = x0 + integral v
v = v0 + integral (f/m)

where x0 and v0 are the initial position and velocity, respectively. These are
exactly the equations that one would write to describe the physical system. It is
easy to imagine how similar concepts could be used to describe animations, to
control robots, or in general, to realize control systems typically described as
recursive integral / differential equations.

Furthermore, time transformations could be performed with simple expressions
such as timetransform(f,b), which transforms b in time according to the function f.
Formally, if b(t) is b’s behavior at time t, then b(f(t)) is the behavior of
timetransform(f,b) at time t.

Interactivity

Interaction in the real world is pervasive. People interact with all sorts of objects,
including computers, and objects interact with each other. This interactivity (a
word that I prefer over reactivity, which conjures an image of one-directional
interaction) is qualitatively different from continuous behavior, and is
characterized by the occurrence of discrete events. These events can be
viewed as the discontinuities that link together otherwise continuous behaviors.
A ball falls gracefully under the influence of gravity, only to be abruptly changed
through interaction with the floor. A heating system behaves smoothly when on,
heat dissipates smoothly when the system is off, and the hysteresis of a
thermostat is what links them.

A programming language should have rich abstractions to describe interactivity,
but most are limited to very sequential process- or event-based reactivity that
lacks clarity and succinctness. What is needed is a more declarative approach
to interactivity. For example, using the previous examples, a bouncing ball can
be described declaratively as:

y = y0 + integral v
v = v0 + integral g `until` (y==0) è (-v)

(Interestingly, this is an area where programming language design could have
an impact on methods for describing physical systems. In most physics
textbooks, for example, interactions such as these are at best described
informally and piecemeal, with no closed-form equation to describe the entire
behavior.)

In the above example, (y==0) is a predicate event. There are many other kinds
of events too: interactions with the user (mouse, keyboard, etc.), ethernet
messages, robot sensors, and so on. They can all be captured within this same
framework.
Non-Causality

It is far too easy when modeling the real world to assume that everything is
causal, which leads one to treat most objects as black boxes that receive input
at one end, and produce output at the other. But in fact, it is sometime more
natural to connect objects together in a non-causal manner, with bi-directional
connections rather than unidirectional. When done in this way, properties of the
connections themselves contribute to the overall system behavior. Two black
boxes with ports a and b could be connected with a declaration such as:

connect (box1.a, box2.b)

This style of programming is reminiscent of logic programming, where logical
variables play the role of both input and output. But here, the intent is that
connect itself is a user-defined connection that specifies the overall behavior of
the system.

Real-Time

I’ve talked about time, and I’ve talked about the real world, but I have not yet
talked about real-time behavior. Real-time programming is perhaps one of the
most difficult domains in which to work, and is also one of the most important.
Many life-critical systems depend intimately on proper real-time behavior. As
with the concepts discussed above, I believe that we need a more declarative
approach to dealing with real-time and, in general, resource-bounded
computation. This can be achieved in one of two ways: either implicitly, through
a restricted language for which resource bounds can be guaranteed, or
explicitly through a design whereby the user specifies resource constraints and
(either manually or automatically) constructs a program guaranteed to meet
those constraints.

Conclusions

Not surprisingly in a white paper such as this, my research group has been
working on programming language abstractions along the lines of what has
been described herein (see some references below). For example, we have
been very successful in designing languages that capture time and reactivity,
and have successfully applied those languages in the areas of animation,
robotics, and general control. However, we don’t nearly have all the answers.
There are many open problems such as performance issues, interactions
between large numbers of objects, and so on. We have just recently made

some progress on real-time behavior, but have only just started thinking about
non-causal behavior. I have tried to suggest avenues for exploration that will
yield answers different from the ones that we currently have, and to ask
questions that we have not previously raised. What ties all of these ideas
together is the emphasis on creating abstractions of the real world since, after
all, it is within that world that our programs run and with which they interact.

References

P. Hudak, The Haskell School of Expression – Learning Functional Programming
through Multimedia, Cambridge University Press, New York, 2000.

Z. Wan and P. Hudak, Functional Reactive Programming From First Principles, in
Proceedings of Symposium on Programming Language Design and
Implementation, ACM Press, 2000.

J. Peterson, G. Hager, and P. Hudak, A Language for Declarative Robotic
Programming, Int’l Conference on Robotics and Automation, 1999.

J. Peterson, P. Hudak, and C. Elliott, Lambda in Motion: Controlling Robots With
Haskell, First International Workshop on Practical Aspects of Declarative
Languages, SIGPLAN, January 1999.

A. Reid, J. Peterson, G. Hager, and P. Hudak, Prototyping Real-Time Vision
Systems: An Experiment in DSL Design, International Conference on Software
Engineering, May 1999.

C. Elliott and P. Hudak, Functional Reactive Animation, Proceedings of the
International Conference on Functional Programming, 1998.

Z. Wan, W. Taha, and P. Hudak, Real-Time FRP, Proceedings of the International
Conference on Functional Programming, 2001.

